Inferring large-scale gene regulatory networks using a low-order constraint-based algorithm.
نویسندگان
چکیده
Recently, simplified graphical modeling approaches based on low-order conditional (in-)dependence calculations have received attention because of their potential to model gene regulatory networks. Such methods are able to reconstruct large-scale gene networks with a small number of experimental measurements, at minimal computational cost. However, unlike Bayesian networks, current low-order graphical models provide no means to distinguish between cause and effect in gene regulatory relationships. To address this problem, we developed a low-order constraint-based algorithm for gene regulatory network inference. The method is capable of inferring causal directions using limited-order conditional independence tests and provides a computationally-feasible way to analyze high-dimensional datasets while maintaining high reliability. To assess the performance of our algorithm, we compared it to several existing graphical models: relevance networks; graphical Gaussian models; ARACNE; Bayesian networks; and the classical constraint-based algorithm, using realistic synthetic datasets. Furthermore, we applied our algorithm to real microarray data from Escherichia coli Affymetrix arrays and validated the results by comparison to known regulatory interactions collected in RegulonDB. The algorithm was found to be both effective and efficient at reconstructing gene regulatory networks from microarray data.
منابع مشابه
A New Asynchronous Parallel Algorithm for Inferring Large-Scale Gene Regulatory Networks
The reconstruction of gene regulatory networks (GRNs) from high-throughput experimental data has been considered one of the most important issues in systems biology research. With the development of high-throughput technology and the complexity of biological problems, we need to reconstruct GRNs that contain thousands of genes. However, when many existing algorithms are used to handle these lar...
متن کاملAn empirical Bayes approach to inferring large-scale gene association networks
MOTIVATION Genetic networks are often described statistically using graphical models (e.g. Bayesian networks). However, inferring the network structure offers a serious challenge in microarray analysis where the sample size is small compared to the number of considered genes. This renders many standard algorithms for graphical models inapplicable, and inferring genetic networks an 'ill-posed' i...
متن کاملOptimal Design of FPI^λ D^μ based Stabilizers in Hybrid Multi-Machine Power System Using GWO Algorithm
In this paper, the theory and modeling of large scale photovoltaic (PV) in the power grid and its effect on power system stability are studied. In this work, the basic module, small signal modeling and mathematical analysis of the large scale PV jointed multi-machine are demonstrated. The principal portion of the paper is to reduce the low frequency fluctuations by tuned stabilizer in the atten...
متن کاملReverse engineering and analysis of large genome-scale gene networks
Reverse engineering the whole-genome networks of complex multicellular organisms continues to remain a challenge. While simpler models easily scale to large number of genes and gene expression datasets, more accurate models are compute intensive limiting their scale of applicability. To enable fast and accurate reconstruction of large networks, we developed Tool for Inferring Network of Genes (...
متن کاملSemantic Constraint and QoS-Aware Large-Scale Web Service Composition
Service-oriented architecture facilitates the running time of interactions by using business integration on the networks. Currently, web services are considered as the best option to provide Internet services. Due to an increasing number of Web users and the complexity of users’ queries, simple and atomic services are not able to meet the needs of users; and to provide complex services, it requ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular bioSystems
دوره 6 6 شماره
صفحات -
تاریخ انتشار 2010